autopdex.dae.TimeSteppingManager

class autopdex.dae.TimeSteppingManager(static_settings, settings={'current time': 0.0}, root_solver=<function newton_solver>, save_policy=None, step_size_controller=<autopdex.dae.ConstantStepSizeController object>, postprocessing_fun=<function TimeSteppingManager.<lambda>>, pre_step_updates=None, post_step_updates=None)[source]

Manages the time stepping procedure for a simulation using multi-stage integration schemes.

This class orchestrates the simulation by coordinating various components such as:
  • Time integrators for different fields,

  • A root solver for implicit equations,

  • An adaptive step size controller,

  • A save policy for recording history,

  • Pre-step and post-step update functions for custom processing.

The manager initializes the simulation state from given degrees of freedom (DOFs) and then runs a loop over a specified number of time steps. At each step, it computes the new state using multi-stage methods, applies error control and adaptive time stepping, and optionally records simulation history. The final state along with simulation statistics is returned.

__init__(static_settings, settings={'current time': 0.0}, root_solver=<function newton_solver>, save_policy=None, step_size_controller=<autopdex.dae.ConstantStepSizeController object>, postprocessing_fun=<function TimeSteppingManager.<lambda>>, pre_step_updates=None, post_step_updates=None)[source]

Methods

__delattr__(name, /)

Implement delattr(self, name).

__dir__()

Default dir() implementation.

__eq__(value, /)

Return self==value.

__format__(format_spec, /)

Default object formatter.

__ge__(value, /)

Return self>=value.

__getattribute__(name, /)

Return getattr(self, name).

__getstate__()

Helper for pickle.

__gt__(value, /)

Return self>value.

__hash__()

Return hash(self).

__init_subclass__

This method is called when a class is subclassed.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__ne__(value, /)

Return self!=value.

__new__(**kwargs)

__reduce__()

Helper for pickle.

__reduce_ex__(protocol, /)

Helper for pickle.

__repr__()

Return repr(self).

__setattr__(name, value, /)

Implement setattr(self, name, value).

__sizeof__()

Size of object in memory, in bytes.

__str__()

Return str(self).

__subclasshook__

Abstract classes can override this to customize issubclass().

_assemble_sparse_tangent(x_flat, q_n, q_t_n, ...)

_assemble_sparse_tangent_domain(x_flat, q_n, ...)

_initialize(dofs)

Initializes history for multi-step methods and stores the global DOF structure as a template for unflattening.

_multi_stage_step(q, t, t_n, dt, q_n, q_t_n, ...)

_tree_flatten(obj)

_tree_unflatten(aux_data, children)

run(dofs, dt0, t_max, num_time_steps[, settings])

Executes the time stepping loop for the simulation.

Attributes

__annotations__

__dict__

__doc__

__module__

__weakref__

list of weak references to the object